How to cite item

Technical pitfalls and tips for the valve-in-valve procedure

  
@article{ACS16400,
	author = {Vinayak Bapat},
	title = {Technical pitfalls and tips for the valve-in-valve procedure},
	journal = {Annals of Cardiothoracic Surgery},
	volume = {6},
	number = {5},
	year = {2017},
	keywords = {},
	abstract = {Transcatheter aortic valve implantation (TAVI) has emerged as a viable treatment modality for patients with severe aortic valve stenosis and multiple co-morbidities. More recent indications include the use of transcatheter heart valves (THV) to treat degenerated bioprosthetic surgical heart valves (SHV), which are failing due to stenosis or regurgitation. Valve-in-valve (VIV) procedures in the aortic position have been performed with a variety of THV devices, although the balloon-expandable SAPIEN valve platform (Edwards Lifesciences Ltd, Irvine, CA, USA) and self-expandable CoreValve platform (Medtronic Inc., MN, USA) have been used in majority of the patients. VIV treatment is appealing as it is less invasive than conventional surgery but optimal patient selection is vital to avoid complications such as malposition, residual high gradients and coronary obstruction. To minimize the risk of complications, thorough procedural planning is critical. The first step is identification of the degenerated SHV, including its model, size, fluoroscopic appearance. Although label size and stent internal diameter (ID) are provided by the manufacturer, it is important to note the true ID. The true ID is the ID of a SHV after the leaflets are mounted and helps determine the optimal size of THV. The second step is to determine the type and size of the THV. Although this is determined in the majority of the cases by user preference, in certain situations one THV may be more suitable than another. As the procedure is performed under fluoroscopy, the third step is to become familiarized with the fluoroscopic appearance of both the SHV and THV. This helps to determine the landmarks for optimal positioning, which in turn determines the gradients and fixation. The fourth step is to assess the risk of coronary obstruction. This is performed with either aortic root angiography or ECG-gated computerised tomography (CT). Finally, the route of approach must be carefully planned. Once these aspects are addressed, the procedure can be performed efficiently with a low risk of complications.},
	issn = {2304-1021},	url = {https://www.annalscts.com/article/view/16400}
}